*GRADIENT

Window Heat Pumps

Connecticut Multifamily Housing Innovations Network Lunch & Learn June 27 2025

Vince Romanin, Founder & CTO @ Gradient Samantha Lamos, Policy & Incentives

Gradient at a Glance

Product deployment: Pioneered inverted-U heat pumps in 2022, with units operating in 36 states

Key partnerships: NYSERDA, NYCHA

Key awards:

Location: San Francisco, CA

Agenda

Window heat pumps: Market overview, competing technologies, advantages

- 2. <u>Gradient product overview</u>: Installation, specs, capabilities, etc.
- 3. <u>Case studies</u>:
 examples of installations, what
 went well, measured
 performance

Window Heat Pumps: Introduction

A Massive Market Left Behind: Pre-1980s Multifamily

TRADITIONAL HEAT PUMPS HAVE < 9% PENETRATION IN PRE-1980S BUILDINGS¹, DUE TO FUNDAMENTAL DEPLOYMENT CHALLENGES

Traditional heat pump solutions require extensive permitting, construction, retrofits, and skilled labor

HIGH INITIAL COST

INFRASTRUCTURE LIMITS: DUCTING, ELECTRICAL

PERMITTING, SKILLED LABOR SHORTAGES

ASBESTOS, TENANT DISPLACEMENT

1.50% lower penetration of heat pumps in pre-1980s buildings. Source: https://www.eia.gov/consumption/residential/data/2020/hc/pdf/HC%206.3.pdf

What we want:

Better for climate

- **Efficient**: predictable, verifiable performance
- **→ Electric & Variable Speed**
- --- Refrigerant management

Better for people

- Networked: remote control, troubleshooting, coordination
- Comfort / Health: ventilation, air quality, humidity, noise, aesthetics

Cost-effective & Scalable

- Easily / quickly Installable, scalable workforce
- → Modular: local comfort, mass-producible, leak-free, minimal on-site configuration
- **Deployable:** compatible with as many climates/buildings as possible
- Data-driven performance, load monitoring, control

The Gradient Solution: Connected, Easy-to-Deploy Heat Pump Technology

ADAPTABLE, MODULAR DESIGN

All-season comfort: operates down to -13°F

3-5x more efficient than resistance heat

Plugs into a standard 120-volt outlet

LL97 Compliant: 95% lower direct emissions

MERV 13 filter option for improved air quality

HASSLE-FREE, LOW COST

No permits, drilling, technicians, or electrical complexities

30-minute install by 2 non-professionals

Removes single point of failure and increases uptime of heating/cooling

No maintenance beyond filter replacement

SMART & CONNECTED

Demand response integration

Cloud-based energy management

Enhanced air quality control

The Gradient
All-Weather 120V
Window Heat Pump

Competitive Advantage

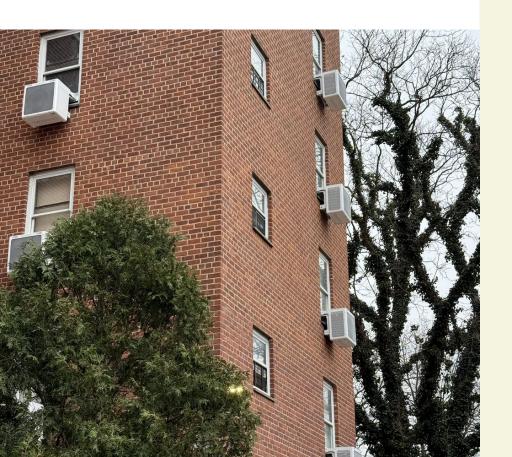
Professionally installed systems suffer from high labor costs and refrigerant management issues, while conventional window ACs are inefficient and obtrusive.

No Refrigerant Handling

Gradient
1
1

MINI-SPLIT

Installation **Avoid Building Modifications** Cold Climate Heating


Plug-in Installation

Operation **Zonal Control**

*GRADIENT

Gradient Product Overview

Applications

Today

 Ideal solution for older multifamily buildings with boilers, radiators, no AC / window AC

Near Future

- ADUs, single-family homes
- Enabling renters to take electrification into their own hands
- Form factors for other window types

Long-Term Vision

- Smaller, more integrated, **nearly invisible**
- Incorporate: ventilation, ERV/HRV, smart light control, air quality control
- A full comfort system—not just heating and cooling

Spotlight: Condensate Management

The outdoor unit of some (not all) window heat pumps can handle condensate without any additional installation/ configuration of drain lines

Air Flow and Filtration

Air Flow

- Up to 400 CFM airflow
- Dual outlet design
- Variable speed

MERV 13 Filter Replacements

- Captures finer pollutants
- Healthier indoor air
- Wildfire smoke protection
- Less dust, lower maintenance
- Smarter building design

Installation

Minimal Window Efficiency Loss

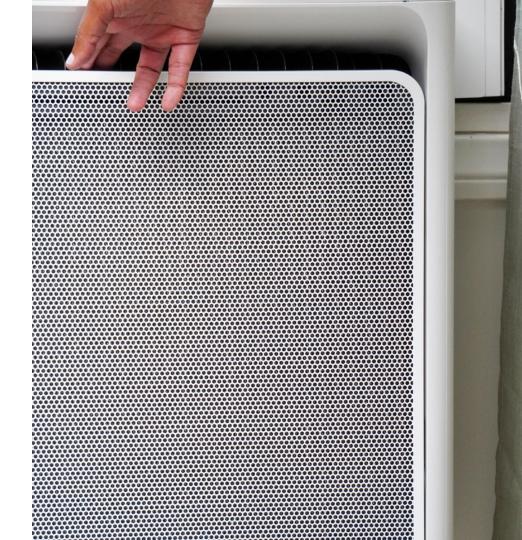
 Third party results at NYCHA showed average air leakage increase was 3.1cfm at 75Pa pressure difference. 4 out of 7 windows that were tested showed improved window sealing after unit installation.

Security

- Off-the-shelf window locks interface well with window heat pumps.
- 3 individuals attempted theft on the outside of first floor apartment and were unsuccessful.

Features of Window Heat Pumps

Commissioning


 No commissioning required by installer; plug & play installation

End of Life

- System removed just as quickly as install, with no damage to building
- System/refrigerant can be recycled similar to any window AC

Code Compliance

Similar to window AC, no permit required

Efficiency Ratings

CEER

- Combined Energy Efficiency Ratio (CEER) is the Seasonal Cooling Efficiency
- An approximate crosswalk between CEER and SEER2 can be calculated

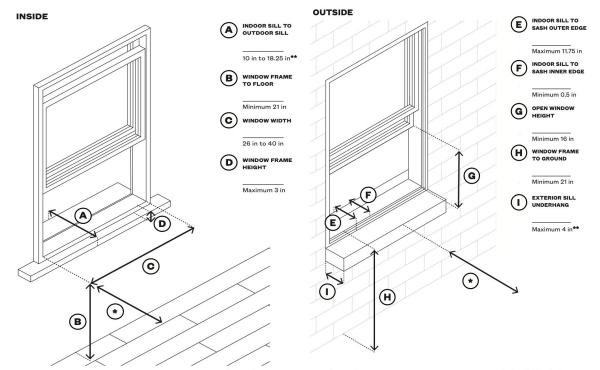
CEER	SEER2	EER2
16.8	19-23	13.6

HEER

- ▶ Heating Energy Efficiency Ratio (HEER) is the Seasonal Heating Efficiency
- ► HEER and HSPF2 can be directly crosswalked because they involve the same test procedures
- ENERGY STAR has published their <u>HEER</u> testing methodology for reverse cycle room air conditioners (window heat pumps)

HEER	HSPF2	Capacity Ratio @ 5°F	COP @ 5°F
9.4	9.3	80%	2.06

Performance / spec sheet summary


Electrical	Voltage	Frequency	Circuit Amps	
Requirements	120 V 60 Hz		15 A	
	Outdoor Temp	Capacity	Efficiency	
Thermal Performance	95 °F	9300 BTU/h	13.6 (EER)	
	47 °F	9000 BTU/h	4.04 (COP)	
	17 °F	9000 BTU/h	2.37 (COP)	
	5 °F	7200 BTU/h	2.06 (COP)	
	-13 °F	7026 BTU/h	1.59 (COP)	
CEER ¹	16.8	HEER ²	9.4	

Performance Specifications

Heating Performance					
Outdoor Indoor			Capacity Level		
Temperature	Temperature		Minimum	Rated	Maximum
		Capacity (BTU/h)	3,130	9,000	13,976
47 °F	70 °F	Consumed Power (kW)	0.21	0.65	1.28
		COP	4.29	4.04	3.19
17 °F	70 °F	Capacity (BTU/h)	3,200	9,000	10,092
		Consumed Power (kW)	0.41	1.11	1.35
		COP	2.31	2.37	2.19
		Capacity (BTU/h)	2,545	7,200	8,605
5 °F	70 °F	Consumed Power (kW)	0.38	1.02	1.33
		COP	1.94	2.06	1.89
		Capacity (BTU/h)	2,320	-	7,026
-13 °F	70 °F	Consumed Power (kW)	0.44	-	1.30
		COP	1.54	-	1.59

Dimensions & Sizing Guide

Window Dimensions Required (at minimum)

^{*} The front of the indoor unit must have a minimum of 40 in (102cm) of space without obstructions.

 $[\]ensuremath{^{**}}$ For sills outside of this range but within 6.25 in - 20 in, contact Gradient for support.

^{*}The front of the outdoor unit must have a minimum of 40 in (102cm) of space without obstructions. The sides and back of the outdoor unit must have a minimum of 3.5 in (9cm) of space from any obstructions.

^{**} For larger underhangs up to 5.25 in, contact Gradient for support.

Room (Window) Heat Pumps: A New Product Category

The Consortium for Energy
Efficiency (CEE) has published their specification and publicly available qualified product list for room heat pumps.

Level	CEER	HEER	COP@ 17	COP@ 5	Defrost	Capacity Ratio
CEE Tier 1	≥ 13.2	≥ 5.8	N/A	N/A	Passive	N/A
CEE Tier 2	≥ 14.4	≥ 7.0	≥ 1.75	N/A	Active	≥70% at 17° F/47°F
CEE Adv. Tier	≥ 15.1	≥ 8.5	N/A	≥ 1.75	Active	≥ 70% at 5F/47° F
Gradient AW120V	16.8	9.4	2.37	2.06	Active	100% at 17° F/47°F, 80% at 5F/47°F

Typical amperage draw

Gradient is designed for a typical 120V residential wall outlet.

Approximate current draw at rated capacities are below:

95 °F - 7.5 A 47 °F - 5.5 A 17 °F - 8.5 A 5 °F - 7.5 A -7 °F - 7 A

Case Study

Clean Heat for All Challenge

- NYPA, NYCHA, & NYSERDA program with goal of cost effectively meeting LL97 targets
 - Inspired by 1996 program for refrigerators
 - Followed by 2024 program for battery stoves
- Key specs
 - Window install, cord connected, factory charged (no EPA 608 license required)
 - 8,300-9,000 BTU/hr with 1.85-2.35 COP at 17°F
 - Meltwater and condensate management
 - Strict targets for air leak and heat leak
 - No auxiliary resistance heat
- Gradient was awarded a contract for 10,000 heat pumps
 - o Initial 36 deployed in December 2023

Clean Heat for All Challenge: 3rd-Party Measurement & Verification Study

Report Design / Structure

NYSERDA contracted Taitem Engineering, a leading high performance building firm, to perform Measurement and Verification (M&V) of the initial heat pumps installed.

Key Research Questions

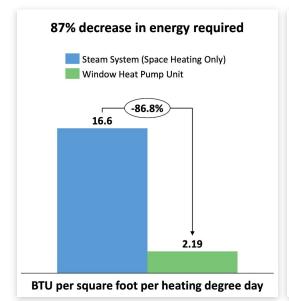
- → Do the window heat pump units provide adequate heat at the coldest outdoor temperatures?
- → What does the **installation** prep and process look like?
- → What is the impact on **electrical consumption** and peak demand?
- → Are residents comfortable and satisfied with the heat pumps?

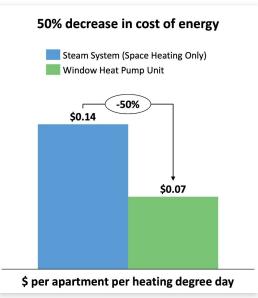
Watched by City/State Agencies, Non-Profits (broad visibility of program)

<u>Building Performance Consultants</u> (advise building owners on HVAC)

MaGrann

<u>NY Utilities</u> (deploy HVAC incentives)




national**grid**

*GRADIENT

NYSERDA Preliminary M&V Results: Massive Energy & Cost Savings, + Happy Residents

- 87% reduction in heating energy
- 50% cost savings
- 70% reduction in heating emissions
- Uniform Temperature: Consistent control, even in unheated spaces.
- Minimal electrical Impact: Only 30%
 of load from heat pumps at peak
- 0% of residents dissatisfied,
 89% of residents satisfied,
 11% neutral

Source: BEEx Roundtable 1/16/25: https://be-exchange.org/wp-content/uploads/2025/01/20250116_CleanHeat_Slides-UP DATED.pdf

"I was thrilled...the best thing."

- REGINA FRED, NYC HOUSING AUTHORITY RESIDENT

'Theu did a demonstration for me and I was thrilled,' Fred said. Now, her grown children call the heat pump 'the best thing'she has in her apartment, and her neighbors have knocked on her door to check out the unit.

Associated Press, 2024

This product is a slam dunk and a winwin for everyone.

> Noel Cruz, Owner Super Cool HVAC, 2025

This is a *game changer*. Now the unit will tell me when it needs maintenance. Much better and easier to maintain than a boiler.

Brooklyn Co-op Super, 2025

With these heat pumps, New York is inverting the usual pattern for new energy technology, which is usually too expensive for regular people to afford. 'It's the rich who are supposed to be early adopters of the new, sexy, top-of-the-line climate tech.

WIRED, 2024

Institutional buyers and the communities they serve are proving that Gradient delivers on its promise, further accelerating adoption in target markets.

Winning on Cost, Control, and Comfort

MAXIMIZED SAVINGS AND EFFICIENCY, SMARTER MANAGEMENT, AND HAPPIER TENANTS

HIGHER NET OPERATING INCOME (NOI) FOR BUILDINGS

~50% lower capex retrofit1: no asbestos mitigation, no drilling results in significantly fewer labor hours and no tenant disruption

~50% Bill savings and 87% energy savings²

SMART HVAC MANAGEMENT

Cloud monitoring ensures instant verification of resident comfort, energy use, and performance

Enhanced remote diagnostics lower maintenance expenses.

Support for demand response programs creates new revenue opportunities and improves energy efficiency.

TENANT BENEFITS SUPPORT HIGHER RETENTION

Built-in AC makes units more attractive. reducing lease-up time and increasing rental property value by up to 12%.3

Replacing uncontrollable radiator with smart controls greatly improves comfort

Better air quality and elegant design reducing turnover costs.

^{1.} Compared to split or VRF heating retrofit costs shown here: https://www.urbangreencouncil.org/going-electric-2/

^{2.} Measured with Gradient system at NYCHA, compared to steam heat: https://be-exchange.org/wp-content/uplo

^{3.} According to Zillow Economic Research: https://public.tableau.com/app/profile/zillow.real.estate.research/viz/ACPremium/ACP

Thank you!

Contact us via email at sales@gradientcomfort.com samantha@gradientcomfort.com

Or visit gradientcomfort.com

Dr. Vincent Romanin Founder / CTO @ Gradient

Samantha Lamos Policy & Incentives

*GRADIENT®