

Sources Working Group #1

Hosted by Strategen Workstream Support:

Collin Smith

Agenda

Overview and Introductions	10 min
Review of Working Group Charter and Schedule	10 min
Presentation and Discussion of Analytical Methodology and Initial Findings	40 min

Methodology for determining H2 production potential must account for opportunity to use both "dedicated" and "excess" renewable energy

Overview of Basic Methodology (not comprehensive)	Factor	Description	Source
Total Potential Capacity	Total Potential Capacity	Total MW of capacity that can be reasonably be built out for the given resource	NREL
	"Base" RE Demand	Amount of renewable energy needed for basic decarbonization needs	DEEP
Unallocated Capacity Capacity RE Gen. Potential	Average Capacity Factor	Average rate at which MW of production capacity can be converted to MWh of energy generation in CT	NREL, DEEP
		Percent of annual energy generation expected to be curtailed that could be diverted to H2 production	DEEP
RE Gen. Potential Potential Total Energy for Hydrogen	Technical Hydrogen Production Potential	Expected H2 production based on available energy and energy required to produce 1 kg of hydrogen	Conversion

Dedicated

Excess

DEEP's Decarbonization IRP provides several scenarios to evaluate "Base" Renewable Energy Demand for decarbonization

Gross Load Case	e Resource Portfolio Scenario		Summary			Sample Calculat	Sample Calculation:	
Base	BR	Reference	Business-as-usual; assumes continuation of			2040 production potential	from "excess"	
			existing, "known and knowable" energy policies		_ ·	renewable energy (based	on "Balanced	
	BB	Balanced Blend	Deploys least cost resources to meet the 100%	Primary		Blend" scenario)		
			Zero Carbon Target assuming Millstone retires					
	BS	BTM Solar PV	Assumes an increased amount of behind the meter		Scenario	Incromontal Solar		
		Emphasis	(BTM) solar is deployed, then deploys least cost				3.316 MW	
			resources to meet the 100% Zero Carbon Target			Capacity	- /	
	BM	Millstone Extension	Assumes Millstone continues operating beyond		Dotontial			
			2029 (the end of Connecticut's current contract)		Polentiai	Incremental Onshore	352 M/M	
			and then deploys least cost resources to meet the		scenario	Wind Capacity	552 10100	
		N. T	100% Zero Carbon Target		Sectionio			
	В	No Transmission	Eliminates transmission constraints, then deploys			Incremental Offshore		
		Constraint	Target			Wind Capacity	3,745 10100	
	ED	Deference	Target Business-as-usual: assumes continuation of					
		Reference	evisting "known and knowable" energy policies			Regional Curtailment	/	
	FB	Balanced Blend	Deploys least cost resources to meet the 100%	Potential	Rate	6.8%		
	20	balancea biena	Zero Carbon Target assuming Millstone retires		Nate			
Electrification	ES	BTM Solar PV	Assumes an increased amount of BTM solar is		scenario			
		Emphasis	deployed, then deploys least cost resources to		H2 Production Potential	30 kt		
			meet the 100% Zero Carbon Target					
	EM	Millstone Extension	Assumes Millstone continues operating beyond					
			2029 (the end of Connecticut's current contract)		Potential			
			and then deploys least cost resources to meet the		coonario			
			100% Zero Carbon Target		scenario			
	ET	No Transmission	Eliminates transmission constraints, then deploys					
		Constraint	least cost resources to meet the 100% Zero Carbon					
			Target					

Some potential to produce H2 from solar, particularly in southeast CT

2040 production potential from solar (based on "Balanced Blend" scenario)		
Total Potential Capacity	27,854 MW	
Incremental Solar Capacity (i.e. "Base RE Demand)	3,316 MW	
Unallocated Capacity	24,538 MW	
Average Capacity Factor	16.7%	
H2 Production Potential	695 kt	

STRATEGEN

H2 production from onshore wind is limited by resource constraints

Under a "limited" scenario view, onshore wind resource is already fully committed across most decarbonization scenarios

3.596401 - 6.731100

6.731101 - 13.753800

Offshore wind potential is driven by coastal lease areas that become available for development

Offshore wind resource is significant, but potentially limited by:

- Number and location of lease areas
- Opportunities for direct connection to CT-based hydrogen production

Offtaker locations match up well with gas infrastructure but not necessarily renewable energy production zones

Green lines indicate gas transmission pipelines. Red/yellow heat map indicates presence of smaller manufacturing facilities

Future analysis can consider other potential energy sources for hydrogen production

Potential Energy Sources	Potential Restrictions	
Nuclear	Usage rates of existing in-state nuclear plants	
Biomass	Supply and competing uses	
Biomethane	Supply and competing uses, possibly definition of clean hydrogen	

Biomass

Discussion Questions

- + How can the methodology presented here be refined to provide better insights?
- + What are the most useful scenarios from the DEEP IRP to investigate?
- + What sources could we reference to refine this analysis?
 - Connecticut-specific curtailment rates
 - Nuclear plant capacity factors in 2040
- + How restricted should we assume land is for renewable energy development?
- + What's the best way for offshore wind to be incorporated into hydrogen production? (e.g. dedicated resource or source of curtailed energy)?
- + What energy feedstocks should we prioritize for hydrogen production?

Appendix

Initial estimate of H2 supply potential can be developed from available renewable energy capacity and expected curtailment rates

Factor	Description	Source	Comments
Total Potential Capacity	Total MW capacity that can be reasonably be built out for the given resource	NREL Renewable Energy Supply Curves ("Limited" setting)	<i>"Limited" setting tests the most conservative land availability assumptions</i>
Unallocated Capacity	Total Potential Capacity minus capacity that is assumed to be installed for "base" renewable energy demand	DEEP Decarbonization IRP (dependent on scenario)	Uses assumption around renewable energy needed for other purposes
Average Capacity Factor	Average rate at which MW of production capacity can be converted to MWh of energy generation in CT	NREL Renewable Energy Supply Curves	Multiplied by Unallocated Capacity to calculate energy generation potential
Expected Curtailment Rate	Percent of annual energy generation expected to be curtailed that could be diverted to H2 production	DEEP Decarbonization IRP (dependent on scenario)	Based on total renewable energy generation in applicable scenario
H2 Production Potential	Expected H2 production based on available energy and energy required to produce 1 kg of hydrogen	Conversion	

Northeast Regional Hub – Solar Production Potential

capacity_mw

0.518400 - 568.861102
568.861103 - 1249.836455
1249.836456 - 1782.777600
1782.777601 - 2253.759694
2253.759695 - 2697.507309
2697.507310 - 3051.146981
3051.146982 - 3352.650750
3352.650751 - 3624.225019
3624.225020 - 3878.679178
3878.679179 - 4203.990619

Northeast Regional Hub – Wind Production Potential

STRATEGEN

capacity_mw
0.024300 - 3.742200
3.742201 - 9.890100
9.890101 - 18.395100
18.395101 - 28.771200
28.771201 - 40.386600
40.386601 - 56.060100
56.060101 - 74.382300
74.382301 - 95.814900
95.814901 - 130.077900
130.077901 - 315.875700

14

Northeast Regional Hub – Major Offtakers

Biomass and Biomethane Heat Maps

Biomethane

