

Hydrogen Power Study Task Force: Infrastructure Working Group Meeting #3

Hosted by Strategen Consulting November 17, 2022

Meeting Logistics

- + <u>Mute Microphone</u> in order to prevent background noise that disturbs the meeting, if you aren't talking, please mute your microphone or phone.
- + <u>Chat Box</u> if you aren't being heard, please use the chat box or raise your hand to ask a question. Please try to limit comments in the chat as these may not be officially captured in the record.
- + <u>Recording Meeting</u> we will record and post the meetings at <u>www.ctgreenbank.com/hydrogentaskforce</u> and you can also access meeting dates and dial-in information through Secretary of State.
- + <u>State Your Name</u> for those talking, please state your name for the record.

STRATEGEN

Agenda

- + Welcome and Introductions 10 minutes
- + Connecticut Hydrogen Infrastructure Discussion:
 - Ancillary Infrastructure Needs 20 minutes
 - Safety and Supply Chain 10 minutes
- + Discussion and Next Steps 20 minutes

Reminder: Strategen's Role

- + The Strategen team will handle meeting logistics including scheduling and recording meeting minutes.
- + The Strategen team will coordinate with Working Group Co-Chairs to develop meeting agendas which will be provided to participants in advance of Working Group meetings.
- + The Strategen team will provide technical assistance (including research), where appropriate, for the Working Group.
- It is expected that this working group will meet on a monthly cadence.
 Meeting recordings and meeting minutes will be publicly available.

Introductions

Please share your name, title, and organization

Working Group Meeting Schedule

	September	October	November	December
Funding	9/27 4-5pm	10/26 10:30am-12 pm	11/18 10:30am-12 pm	12/15 10:30am-12:00 pm
Infrastructure	9/28 2-3pm	10/24 2-3pm	11/17 3-4pm	12/19 3-4pm
Policy & Workforce Development	9/26 3-4pm	10/20 12-1pm	11/29 12-1pm	12/15 12-1pm
Sources	9/27 1-2pm	10/25 2-3:30pm	11/17 11am-12pm	12/20 1-2:30pm
Uses	9/27 12-1pm		11/22 12-1pm	

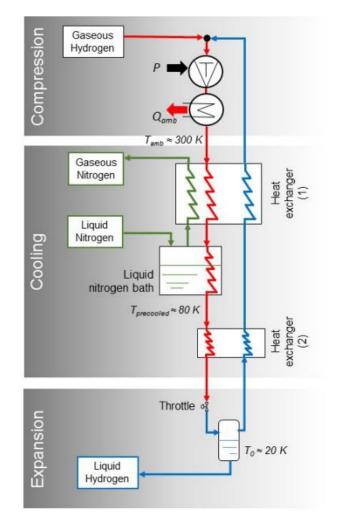
EGEN

Compression

- + Hydrogen is produced at low pressures (20– 30 bar) and must be compressed to between 200 and 500 bar to be economically transported.
 - + Transporting compressed hydrogen on trucks is a cheaper option than liquid hydrogen or other alternatives for short distances (<100 miles).
 - Hydrogen's energy content by volume is roughly 1/3 that of natural gas – i.e., it requires 3 times as much space to hold the same amount of energy in hydrogen vs. natural gas.
 - Hydrogen's energy content by mass is 3x that of gasoline — 120 MJ/kg for hydrogen versus 44 MJ/kg for gasoline. On a volume basis, however, liquid hydrogen is less dense (8 MJ/L vs. 32 MJ/L)
- + Hydrogen compression makes up roughly 55-65% of compression, storage, and distribution costs, equating to 1.10 - 1.54\$ per kilogram of compressed hydrogen.

STRATEGEN

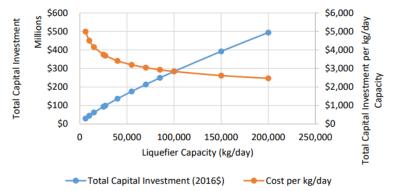
Auxiliary Infrastructure


Local Storage

- + Hydrogen's high energy per mass and low energy per volume requires the development of local, high density storage methods.
- + On-site hydrogen storage is used at central hydrogen production facilities, transport terminals, and end-use locations.
 - + Storage options include insulated liquid tanks and gaseous storage tanks.
 - + Potential tank materials for gaseous include all-metal cylinders, and resin-impregnated continuous filament,
 - + Cryogenic liquid storage containers, or dewars, are a common way of storing large quantities of hydrogen.
- + Localized hydrogen storage is key to enabling the advancement of hydrogen and fuel cell technologies, especially in applications like stationary power and transportation.

Liquefaction

- + Liquid hydrogen is often desirable compared to gaseous hydrogen due to its higher energy density and lower cost at high volumes.
 - + Liquefying hydrogen is especially valuable for truck deliveries
 - + Truck delivery of liquid hydrogen is more costeffective than that of gaseous hydrogen when transported over long distances (e.g. >400 miles)
- + The liquefaction process typically consists of three separate sub-processes: compression, cooling, and expansion.



Source: Connelly, Elizabeth et al. (2019). Current Status of Hydrogen Liquefaction Costs DOE Hydrogen and Fuel Cells Program Record #19001.

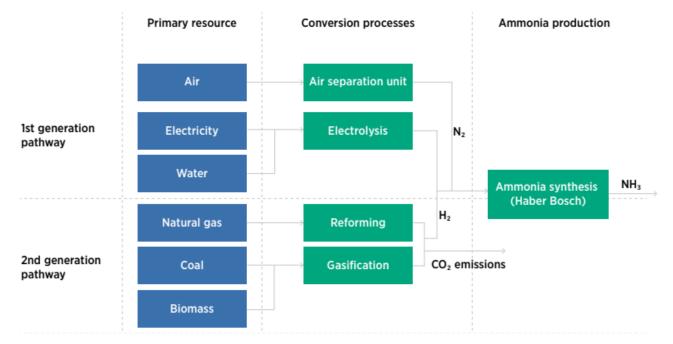
Liquefaction

- + Current research on the economics of industrial liquefaction is focused on a range of capacities from 6,000 to 200,000 kg/day.
 - + Estimated capital costs range from \$30 million to \$490 million.
 - + The capital investment for liquefication per kg/day of capacity decreases with scaling, but these reductions diminish with increasing capacity.
- + At a capacity of 27,000 kg/day (which is fairly typical for current commercial liquefiers), the capital cost contribution for the liquefier is around 1.4 \$/kg
 - + Additional operational costs (e.g. electricity and distribution) can increase levelized cost contribution to 2.75 \$/kg

Total Capital Investment of Liquefier by Capacity

Source: Connelly, Elizabeth et al. (2019). Current Status of Hydrogen Liquefaction Costs DOE Hydrogen and Fuel Cells Program Record #19001.

Derivative Fuels


- + Ammonia and synthetic fuels can be derived from hydrogen.
- + They can either be converted back to hydrogen via thermal decomposition and separation processes or used as fuels or chemical feedstocks.
- + Ammonia is particularly promising as an energy carrier because it is easier to store and transport than hydrogen, has a relatively high density, and already has widespread infrastructure.

Derivative Fuels

- + The current commercial-scale method for converting hydrogen to ammonia is the Haber-Bosch process, but new electrochemical conversion methods are being investigated to reduce process emissions.
- + Other derivative fuels include methanol and synthetic kerosene, which can be used in applications like aviation

Source: IRENA (2022). Global Hydrogen Trade to Meet the 1.5C Climate Goal: Technology Review of Hydrogen Carriers.

[44]

Auxiliary Infrastructure in Connecticut

51

A Bertherd

Compression would be required for pipeline transport and geologic storage

Liquefaction and derivative fuel production facilities can be advantageously located near major ports and transport routes

Infrastructure Safety

EGEN

Infrastructure Safety

Pipeline Safety

- + The potential for hydrogen embrittlement is a key safety parameter for hydrogen pipelines, particularly when hydrogen is introduced in pipelines designed to transport natural gas or other commodities.
 - + Specialty steels can be used to mitigate concerns around pipeline embrittlement.
- + Hydrogen is highly flammable, but hydrogen fire radiates significantly less heat than comparable fossil fuel fires, reducing risk of thermal damage.
- + PHMSA has the primary authority to regulate the safety of energy commodity pipelines (both interstate and intrastate).
- + Federal pipeline safety regulations cover pipeline design, construction, operation, and maintenance, as well as spill response planning.
- + PHMSA provides grants for pipeline safety research and development to inform regulatory activities, including hydrogen-related research.

Infrastructure Safety

Auxiliary Infrastructure Safety

- + As mentioned, the characteristics of hydrogen do create several risks that need to be managed, including:
 - + Vulnerability to leakage.
 - + Low ignition energy.
 - + Potential for combustion and embrittlement.
- + There are various codes and standards that outline safe practices for hydrogen handling, particularly in the case of liquid hydrogen.
- + Liquid hydrogen storage tanks typically have several safety mechanisms, including overfilling protection, pressure-relief valves, rupture disks, and pressure-safety valves.

Infrastructure Supply Chain

EGEN

Infrastructure Supply Chain

Hydrogen Electrolyzer and Fuel Cell Supply Chain

- + Equipment to produce and use hydrogen employs several materials with potential supply chain concerns, including:
 - + Graphite (100% imported, mostly from China).
 - + Iridium (100% imported, mostly from South Africa).
 - + Platinum (primarily imported from South Africa).
 - + Strontium (currently 100% imported, although domestic sources do exist).
 - + Yttrium (mostly imported, largely from China).
- + Several other materials used in electrolyzers and fuel cells face more moderate supply concerns, including cobalt, copper, nickel, and manganese.
 - + Ongoing efforts to develop domestic sources of supply for all resources may alleviate supply constraints in the future.
 - + Supply chain strategies will be important to maintain flow of materials to local manufacturers.

Infrastructure Supply Chain

Pipeline Supply Chain

- + In general, supply chains for hydrogen infrastructure are less challenging than electrolyzers and fuel cells.
- + Most hydrogen pipelines in the U.S. are developed and owned by merchant hydrogen producers. Major players include:
 - + Air Liquide.
 - + Linde.
 - + Air Products and Chemicals.
- + Some hydrogen infrastructure technologies (e.g., liquefaction) have not been commercially developed at required scale.
 - + Largest commercially available liquefaction stations can produce around 70,000 kg/day.
 - + World's first liquified hydrogen carrier completed its maiden voyage from Australia to Japan in 2022.

Questions and Discussion

- + Do you see any aspects of hydrogen safety procedures or supply chain constraints as a particular point of concern?
- + Are there any topics that you would like to have investigated more closely?
- + Are there any challenges to infrastructure development specific to Connecticut that should be foregrounded in the discussion?

