

Building Resilience Hazard Assessment and Design

Peer-to-Peer Network Meeting

Friday, February 15, 2019

COMMUNITY-BASED SUSTAINABLE DEVELOPMENT

New Ecology's work is to bring the benefits of sustainable development to the community level, with a concerted emphasis on underserved populations. A mission-driven non profit, we seek to address global environmental and equity issues by making the built environment more efficient, healthier, durable, and resilient. We are nationally recognized for our work on affordable and mutfifamily housing, community and government buildings, educational facilities, renewable energy and local infrastructure and for the positive effect we have on the people who live and work in these places.

Outline

- What and why?
- Mapping Communities, Governments, and Institutions
- Hazard Assessment Vulnerability and Risk
- NEI's Building-Level Approach, Examples, and Design
- Financing Resilience
- Workshop Exercise
- Q&A

What is Resilience?

Adapting to changing climate.

Why now?

Abnormal is the new normal.

New Ecology, Inc. I Boston/Providence/Baltimore/Wilmington I Community-Based Sustainable Development

The New York Times

2018 Boston flooding

FROM The Boston Globe

GE to sell Fort Point HQ, give back \$87 million to state

 $Work \ was \ underway \ in \ August \ on \ General \ Electric's \ Fort \ Point \ offices. \ -David \ L. \ Ryan/The \ Boston \ Globe$

By The Boston Globe updated at 2:03 PM

Image: Reuters/Michelle McLoughlin

Predicted Disasters

Sudden Disasters

Terrorist attack

Mechanical failure

Chronic Hazards

Mapping Communities, Governments, Institutions

CLIMATE READY DC

The District of Columbia's Plan to Adapt to a Changing Climate

Fig. 10 Inland Flooding – 100-year 24-hour storm (Source: Kleinfelder with manhole flooding by MWH, riverine flooding by VHB, November 2015)

Hazard Assessment Vulnerability and Risk

Identify Hazards

Primary	Secondary
Coastal Flooding	Carbon Monoxide Poisoning
Coastal Erosion	Disease
Drought	Emergency Communications Failure
Inland Flooding and Stormwater	Heat Outage
Extreme Heat	Mold
Extreme Cold	Pest Range Expansion
Major Thunderstorm	Power Outage
Snow or Ice Storm	Toxin Exposure
Terrorist Attack	Water Outage
Tornado	
Urban Fire	

Vulnerability and Risk Assessment

Vulnerability – **Sensitivity** to a hazard and the **capacity to adapt** to the hazard.

Image: Virginia Living Museum

Image: Flood Panel

Vulnerability and Risk Assessment

Risk - Likelihood and consequence of a hazard.

Image: FEMA

Image: Houston Chronicle

Vulnerability and Risk Assessment

	Vulnerability		Risk	
Hazard	Sensitivity	Adaptive Capacity	Likelihood	Impact
Stormwater Flooding	Medium	Low	High	High
Sewer Backup	Medium	Low	High	Medium
Tornado	Medium	Low	High	High
High Winds	Medium	Low	Low	High
Extreme Heat	Medium	Medium	Medium	Medium
Extreme Cold	Medium	Low	Medium	Medium
Extended Electric Outage	High	Low	Low	Medium
Extended Water Outage	High	Low	Medium	Medium

NEI's Approach: Existing Buildings

The program seeks to influence the broader affordable housing sector to design, develop and operate climate-resilient, energy-efficient and solar-ready homes. Nearly 19 million families nationwide are housing insecure, either homeless or paying more than half of their monthly income on housing, and climate change aggravates an already short supply of affordable housing. Enterprise believes that this program will help catalyze the affordable housing industry in the District and around the nation to strategically

integrate resilience planning in their development, operations, and preservation plans.

Example 1

Masonry Multifamily High Rise

Building Characteristics

- Norfolk, NE
- Fork in the Elkhorn
 River, FEMA 1%
 Annual Chance
 Flood Zone behind
 Unaccredited Levee
- Built in 1972
- 9 Floors
- 92 1BR Affordable Units

Hazards

- Stormwater Flooding and Sewer Backup
- Tornado and High Winds
- Extreme Heat and Cold
- Extended Electric, Gas, and Water Outage

Example Audit 1 Masonry Multifamily High Rise

Vulnerability and Risk

	Vulnerability		Risk	
Hazard	Sensitivity	Adaptive Capacity	Likelihood	Impact
Stormwater Flooding	Medium	Low	High	High
Sewer Backup	Medium	Low	High	Medium
Tornado	Medium	Low	High	High
High Winds	Medium	Low	Low	High
Extreme Heat	Medium	Medium	Medium	Medium
Extreme Cold	Medium	Low	Medium	Medium
Extended Electric Outage	High	Low	Low	Medium
Extended Water Outage	High	Low	Medium	Medium
	رگر ۱ ر	<u></u>]	

New Ecology, Inc. I Boston/Providence/Baltimore/Wilmington I Community-Based Sustainable Development

Develop and Implement Measures

Rank	Hazard	Measures
1	Stormwater Flooding	Flood Barriers, Perimeter Drains, Elevate Electrical Panels, Relocate Hazardous Chemicals, Elevator Controls
2	Tornado	Structural and Glazing Wind Loading Review, Remove Roof Ballast Stone
2	Sewer Backup	Backflow Preventer
3	Extended Water Outage	Potable Water Storage
4	Extreme Cold	Insulate, Air Seal, Replace Windows
4	Extreme Heat	(see Extreme Heat)
5	High Winds	Structural and Glazing Wind Loading Review, Remove Roof Ballast Stone
6	Extended Electric Outage	Backup Generator
п	1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

New Ecology, Inc. I Boston/Providence/Baltimore/Wilmington I Community-Based Sustainable Development

Scenario: Flood

- Unaccredited Levee
- 1% Annual Chance Flood
- History of Flooding
- Continued

 Occupancy and
 Building Systems
 Operations
- Rapid Removal of Water and Repair

Example 2

Commercial Office Building

Building Characteristics

- Stamford, CT
- Close Proximity to Rippowam River
- Built in 1986
- 10 Floors
- 250,000 Square Feet
- City Emergency
 Operations Center

Hazards

- Coastal Flooding,
 Stormwater Flooding
 and Sewer Backup
- Extreme Heat
- Extended Electric Outage

Develop and Implement Measures

Rank	Hazard	Measures
1	All	Emergency Management Manual
2	Extreme Heat	Cool Roof, Window Shading, Window Replacement
2	Flooding	Backwater Valves, Surface Stormwater Management
3	Extended Power Outage	Quick Connects for Mobile Equipment, Solar+Storage
4	Extended Water Outage	Potable Water Storage

Backwater valves are installed where the wastewater pipe exits the building, so sewage only flows outward. Valves have a hinged flapper that remains open to allow outward flow, but seals tightly if there is backpressure.

Backwater valves are situated above the external sewer line and should be installed in buildings that have sewer connections below the highest manhole cover in the sewer system, especially if the property is within the Special Flood Hazard Area (SFHA). Although sewer blockage can occur any time, it is most likely to happen during storms when large amounts of water and debris move through the system.

least 2 ft. of un-branched pipe upstream of the backwater valve.

- Backwater valves should be installed on the street side of the house trap.
- There should be 2 ft. of unbranched pipe at a 2 percent slope upstream of the backwater valve.
- Backwater valves stop backflow from the municipal sewer system.
- An access hatch allows deaning and maintenance.

Image: Samaniha Yost / Mathew Goodrich.

Co-Benefits: Cost Savings

Solar PV + Battery Storage

 Reduced electricity demand charges, backup power supply, more electricity generated on site used on site

Example 3

Multifamily Low Rise

Year Built: 1963

Most Recent Year Rehabbed: 2000

Total Square Feet: 118,716

Total # Apartments: 202

Total # Bedrooms: 329

Total # Stories: 2 and 3

Basement? Conditioned?: Yes, yes

Water Meter Configuration: 1 meter per building

Electric Meter Configuration: 220 tenant, 16

common meters

Because of hydrostatic pressure, component floodproofing barriers should designed to a maximum of 3 ft.

Image: Colin Hayes.

Dry component floodproofing is often an effective solution for equipment that cannot be elevated or relocated out of basements.

Image: MAP Architects, New York Engineers.

Co-Benefits

Measure with Co-Benefits

- Insulation, Air Sealing, and Window Replacement
 - Heating and Cooling Energy Savings, Improved Passive Survivability, Improved
 Wind Load Performance, Improved Comfort, Improved Functionality, Reduced
 Maintenance

Measure without Co-Benefits

- Backup Generator
 - Increased Building Services, Increased Operations and Maintenance Costs

Recommended Measure	Estimated Cost	
Elevated Electrical Equipment	\$50,000	
Mold Remediation	\$75,000	
Sump Pumps	\$3,000	
Backwater Valves	\$55,000	
Building Floodproofing	\$640,000	
Cool Roof	\$225,000	
Surface Stormwater Management	\$165,000	
High Efficiency Ventilation	\$1,315,000	
Develop Emergency Management Manual	O&M	

Co-Benefits: Cost Savings

Solar PV + Battery Storage

 Reduced electricity demand charges, backup power supply, more electricity generated on site used on site

NEI's Approach: Design

Financing Resilience

- Capital planning and investment timing
- Avoids future losses but does not generate cash flows
- Benefit-cost analysis demonstrates the business case
- Relate payments to benefits and account for ability to pay

CT Resilience Resources

Exercise

5	Are ground-level apartments located above the base flood elevation (BFE, the elevation to which	1, 11
	floodwaters are expected to rise in a 1% annual chance or 100-year flood)?	

Strategies		Definitions
1	Wet Floodproofing	FEMA defines wet floodproofing as "Permanent or temporary measures applied to a structure or its contents that prevent or provide resistance to damage from flooding while allowing floodwater to enter the structure or area. Generally, this includes properly anchoring the structure, using flood resistant materials below the Base Flood Elevation (BFE), protection of mechanical and utility equipment, and use of openings or breakaway walls."
**		
11	Elevated Living Spaces	Convert residential units on floors below the BFE to parking, storage, common rooms and community space, or entryways. Ensure equipment in
		these areas is portable and can be moved to safety before anticipated flooding.

Q&A

Thank you!

Tom Chase Senior Project Manager New Ecology, Inc.

chase@newecology.org